前言
本文翻译自TopCoder上的一篇文章: Dynamic Programming: From novice to advanced ,并非严格逐字逐句翻译,其中加入了自己的一些理解。水平有限,还望指摘。
前言_
我们遇到的问题中,有很大一部分可以用动态规划(简称DP)来解。 解决这类问题可以很大地提升你的能力与技巧,我会试着帮助你理解如何使用DP来解题。 这篇文章是基于实例展开来讲的,因为干巴巴的理论实在不好理解。
注意:如果你对于其中某一节已经了解并且不想阅读它,没关系,直接跳过它即可。
简介(入门)
什么是动态规划,我们要如何描述它?
动态规划算法通常基于一个递推公式及一个或多个初始状态。 当前子问题的解将由上一次子问题的解推出。使用动态规划来解题只需要多项式时间复杂度, 因此它比回溯法、暴力法等要快许多。
现在让我们通过一个例子来了解一下DP的基本原理。
首先,我们要找到某个状态的最优解,然后在它的帮助下,找到下一个状态的最优解。
“状态”代表什么及如何找到它?
“状态”用来描述该问题的子问题的解。原文中有两段作者阐述得不太清楚,跳过直接上例子。
问题:如果我们有面值为1元、3元和5元的硬币若干枚,如何用最少的硬币凑够11元? (表面上这道题可以用贪心算法,但贪心算法无法保证可以求出解,比如1元换成2元的时候)
首先我们思考一个问题,如何用最少的硬币凑够i元(i<11)?为什么要这么问呢? 两个原因:1.当我们遇到一个大问题时,总是习惯把问题的规模变小,这样便于分析讨论。 2.这个规模变小后的问题和原来的问题是同质的,除了规模变小,其它的都是一样的, 本质上它还是同一个问题(规模变小后的问题其实是原问题的子问题)。
好了,让我们从最小的i开始吧。当i=0,即我们需要多少个硬币来凑够0元。 由于1,3,5都大于0,即没有比0小的币值,因此凑够0元我们最少需要0个硬币。 (这个分析很傻是不是?别着急,这个思路有利于我们理清动态规划究竟在做些什么。) 这时候我们发现用一个标记来表示这句“凑够0元我们最少需要0个硬币。”会比较方便, 如果一直用纯文字来表述,不出一会儿你就会觉得很绕了。那么, 我们用d(i)=j来表示凑够i元最少需要j个硬币。于是我们已经得到了d(0)=0, 表示凑够0元最小需要0个硬币。当i=1时,只有面值为1元的硬币可用, 因此我们拿起一个面值为1的硬币,接下来只需要凑够0元即可,而这个是已经知道答案的, 即d(0)=0。所以,d(1)=d(1-1)+1=d(0)+1=0+1=1。当i=2时, 仍然只有面值为1的硬币可用,于是我拿起一个面值为1的硬币, 接下来我只需要再凑够2-1=1元即可(记得要用最小的硬币数量),而这个答案也已经知道了。 所以d(2)=d(2-1)+1=d(1)+1=1+1=2。一直到这里,你都可能会觉得,好无聊, 感觉像做小学生的题目似的。因为我们一直都只能操作面值为1的硬币!耐心点, 让我们看看i=3时的情况。当i=3时,我们能用的硬币就有两种了:1元的和3元的( 5元的仍然没用,因为你需要凑的数目是3元!5元太多了亲)。 既然能用的硬币有两种,我就有两种方案。如果我拿了一个1元的硬币,我的目标就变为了: 凑够3-1=2元需要的最少硬币数量。即d(3)=d(3-1)+1=d(2)+1=2+1=3。 这个方案说的是,我拿3个1元的硬币;第二种方案是我拿起一个3元的硬币, 我的目标就变成:凑够3-3=0元需要的最少硬币数量。即d(3)=d(3-3)+1=d(0)+1=0+1=1. 这个方案说的是,我拿1个3元的硬币。好了,这两种方案哪种更优呢? 记得我们可是要用最少的硬币数量来凑够3元的。所以, 选择d(3)=1,怎么来的呢?具体是这样得到的:d(3)=min{d(3-1)+1, d(3-3)+1}。
OK,码了这么多字讲具体的东西,让我们来点抽象的。从以上的文字中, 我们要抽出动态规划里非常重要的两个概念:状态和状态转移方程。
上文中d(i)表示凑够i元需要的最少硬币数量,我们将它定义为该问题的”状态”, 这个状态是怎么找出来的呢?我在另一篇文章 动态规划之背包问题(一)中写过: 根据子问题定义状态。你找到子问题,状态也就浮出水面了。 最终我们要求解的问题,可以用这个状态来表示:d(11),即凑够11元最少需要多少个硬币。 那状态转移方程是什么呢?既然我们用d(i)表示状态,那么状态转移方程自然包含d(i), 上文中包含状态d(i)的方程是:d(3)=min{d(3-1)+1, d(3-3)+1}。没错, 它就是状态转移方程,描述状态之间是如何转移的。当然,我们要对它抽象一下,
d(i)=min{ d(i-vj)+1 },其中i-vj >=0,vj表示第j个硬币的面值;
有了状态和状态转移方程,这个问题基本上也就解决了。当然了,Talk is cheap,show me the code!
伪代码如下:1
2
3
4
5
6
7
8
9Set Min[i] equal to Infinity for all of i
Min[0]=0
For i=1 to S
For j=0 to N-1
If(Vj<=i AND Min[i-Vj]+1<Min[i])
Then Min[i]=Min[i-Vj]+1
Output Min[S]
下图是当i从0到11时的解:
从上图可以得出,要凑够11元至少需要3枚硬币。
此外,通过追踪我们是如何从前一个状态值得到当前状态值的, 可以找到每一次我们用的是什么面值的硬币。比如,从上面的图我们可以看出, 最终结果d(11)=d(10)+1(面值为1),而d(10)=d(5)+1(面值为5),最后d(5)=d(0)+1 (面值为5)。所以我们凑够11元最少需要的3枚硬币是:1元、5元、5元。
注意:原文中这里本来还有一段的,但我反反复复读了几遍, 大概的意思我已经在上文从i=0到i=3的分析中有所体现了。作者本来想讲的通俗一些, 结果没写好,反而更不好懂,所以这段不翻译了。
初级
上面讨论了一个非常简单的例子。现在让我们来看看对于更复杂的问题, 如何找到状态之间的转移方式(即找到状态转移方程)。 为此我们要引入一个新词叫递推关系来将状态联系起来(说的还是状态转移方程)
OK,上例子,看看它是如何工作的。
一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度。 (讲DP基本都会讲到的一个问题LIS:longest increasing subsequence)
正如上面我们讲的,面对这样一个问题,我们首先要定义一个“状态”来代表它的子问题, 并且找到它的解。注意,大部分情况下,某个状态只与它前面出现的状态有关, 而独立于后面的状态。
让我们沿用“入门”一节里那道简单题的思路来一步步找到“状态”和“状态转移方程”。 假如我们考虑求A[1],A[2],…,A[i]的最长非降子序列的长度,其中i<N, 那么上面的问题变成了原问题的一个子问题(问题规模变小了,你可以让i=1,2,3等来分析) 然后我们定义d(i),表示前i个数中以A[i]结尾的最长非降子序列的长度。OK, 对照“入门”中的简单题,你应该可以估计到这个d(i)就是我们要找的状态。 如果我们把d(1)到d(N)都计算出来,那么最终我们要找的答案就是这里面最大的那个。 状态找到了,下一步找出状态转移方程。
为了方便理解我们是如何找到状态转移方程的,我先把下面的例子提到前面来讲。 如果我们要求的这N个数的序列是:5,3,4,,8,6,7
根据上面找到的状态,我们可以得到:(下文的最长非降子序列都用LIS表示)
- 前1个数的LIS长度d(1)=1(序列:5)
- 前2个数的LIS长度d(2)=1(序列:3;3前面没有比3小的)
- 前3个数的LIS长度d(3)=2(序列:3,4;4前面有个比它小的3,所以d(3)=d(2)+1)
- 前4个数的LIS长度d(4)=3(序列:3,4,8;8前面比它小的有3个数,所以 d(4)=max{d(1),d(2),d(3)}+1=3)
OK,分析到这,我觉得状态转移方程已经很明显了,如果我们已经求出了d(1)到d(i-1), 那么d(i)可以用下面的状态转移方程得到:
d(i) = max{1, d(j)+1},其中j<i,A[j]<=A[i]
用大白话解释就是,想要求d(i),就把i前面的各个子序列中, 最后一个数不大于A[i]的序列长度加1,然后取出最大的长度即为d(i)。 当然了,有可能i前面的各个子序列中最后一个数都大于A[i],那么d(i)=1, 即它自身成为一个长度为1的子序列。
分析完了,上图:(第二列表示前i个数中LIS的长度, 第三列表示,LIS中到达当前这个数的上一个数的下标,根据这个可以求出LIS序列)
Talk is cheap, show me the code:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23#include <iostream>
using namespace std;
int lis(int A[], int n){
int *d = new int[n];
int len = 1;
for(int i=0; i<n; ++i){
d[i] = 1;
for(int j=0; j<i; ++j)
if(A[j]<=A[i] && d[j]+1>d[i])
d[i] = d[j] + 1;
if(d[i]>len) len = d[i];
}
delete[] d;
return len;
}
int main(){
int A[] = {
5, 3, 4, 8, 6, 7
};
cout<<lis(A, 6)<<endl;
return 0;
}
该算法的时间复杂度是O(n^2 ),并不是最优的解法。 还有一种很巧妙的算法可以将时间复杂度降到O(nlogn),网上已经有各种文章介绍它, 这里就不再赘述。传送门: LIS的O(nlogn)解法。 此题还可以用“排序+LCS”来解,感兴趣的话可自行Google。
中级
接下来,让我们来看看如何解决二维的DP问题。
平面上有N*M个格子,每个格子中放着一定数量的苹果。你从左上角的格子开始, 每一步只能向下走或是向右走,每次走到一个格子上就把格子里的苹果收集起来, 这样下去,你最多能收集到多少个苹果。
解这个问题与解其它的DP问题几乎没有什么两样。第一步找到问题的“状态”, 第二步找到“状态转移方程”,然后基本上问题就解决了。
首先,我们要找到这个问题中的“状态”是什么?我们必须注意到的一点是, 到达一个格子的方式最多只有两种:从左边来的(除了第一列)和从上边来的(除了第一行)。 因此为了求出到达当前格子后最多能收集到多少个苹果, 我们就要先去考察那些能到达当前这个格子的格子,到达它们最多能收集到多少个苹果。 (是不是有点绕,但这句话的本质其实是DP的关键:欲求问题的解,先要去求子问题的解)
经过上面的分析,很容易可以得出问题的状态和状态转移方程。 状态S[i][j]表示我们走到(i, j)这个格子时,最多能收集到多少个苹果。那么, 状态转移方程如下:S[i][j]=A[i][j] + max(S[i-1][j], if i>0 ; S[i][j-1], if j>0)
其中i代表行,j代表列,下标均从0开始;A[i][j]代表格子(i, j)处的苹果数量。
S[i][j]有两种计算方式:1.对于每一行,从左向右计算,然后从上到下逐行处理;2. 对于每一列,从上到下计算,然后从左向右逐列处理。 这样做的目的是为了在计算S[i][j]时,S[i-1][j]和S[i][j-1]都已经计算出来了。
伪代码如下:1
2
3
4
5For i=0 to N-1
For j=0 to M-1
S[i][j] = A[i][j]+
max(S[i][j-1],if j>0;S[i-1][j],if i>0 ; 0)
Output S[n-1][m-1]
中高级和高级
省略……
其他
当阅读一个题目并且开始尝试解决它时,首先看一下它的限制。 如果要求在多项式时间内解决,那么该问题就很可能要用DP来解。遇到这种情况, 最重要的就是找到问题的“状态”和“状态转移方程”。(状态不是随便定义的, 一般定义完状态,你要找到当前状态是如何从前面的状态得到的, 即找到状态转移方程)如果看起来是个DP问题,但你却无法定义出状态, 那么试着将问题规约到一个已知的DP问题(正如“高级”一节中的例子一样)。
后记
看完这教程离DP专家还差得远,好好coding才是王道。